
QtSparql - A Gentle Introduction

Adrian Perez - aperez@igalia.com

March 2, 2011



Index

1. QtSparql & TrackerLiveQuery

2. SPARQL bits for the coding masses

3. Examples, Q&A



QtSparql
&

TrackerLiveQuery



Who’s Who

I QtSparql:
Thin library to access RDF stores. All of them in general
(read: not just Tracker).

I QtSparql-Tracker:
Driver for accessing Tracker from QtSparql. Provides some
extensions for features only found in Tracker like e.g. change
notifications.

I QtSparql-Tracker-Live:
Batgadget built on top of QtSparql and the Tracker
extensions, designed to supersede QtTracker.



QtSparql: All You Need to Know In a Single Slide

Familiar, database-like API:

I QSparqlConnection (plus QSparqlConnectionOptions)

I QSparqlQuery (pass it to QSparqlConnection::exec())
I QSparqlResult (note: cursor-like behavior).

I Hint: Its memory usage is scarce.

Extras:

I Asynchronous by default.
I Hint: waitForFinished()
I Hint: dataReady(), finished()

I QSparqlQueryModel (really?)



Going Live: The Big Picture



Using TrackerLiveQuery

Initial data:

I “Initial” query: runs once, fills the model with data.

I Internally, a regular QSparqlQuery is used.

I The tracker:id attribute must appear in one column.

Getting updates:

I “Update” query: runs anytime a change notification arrives.

I To get notifications, TrackerChangeNotifier is used over
D-Bus.

I Spawns a QSparqlQuery with a filter on the affected
tracker:id.

I Updated data is merged into the model.



Going Live: How Queries Look Like? - I

Initial Query:

SELECT

tracker:id(?urn) AS ?trackerid

nie:url(?urn) AS ?url

WHERE {

?urn rdf:type nmm:Photo .

}

ORDER BY ?url



Going Live: How Queries Look Like? - II

Update Query:

SELECT

tracker:id(?urn) AS ?trackerid

nie:url(?urn) AS ?url

WHERE {

?urn rdf:type nmm:Photo .

%FILTER

}

ORDER BY ?url



Going Live: How Queries Look Like? - III

Did you spot the difference?



Going Live: How Queries Look Like? - IV

%FILTER?
WTF???



Going Live: Knowing What To Update - I

The updater needs to run the query only for changed items:

I %FILTER gets replaced by a FILTER statement with the
tracked:id of updated items.

I The “template” for the filter snippet is passed to
TrackerPartialUpdater::watchClass(), like this:

FILTER (tracker:id(?urn) IN %LIST)



Going Live: Knowing What To Update - II

%LIST?
WTF???



Going Live: Knowing What To Update - III

The updater runs the query only for the changed items, and it has
to know where to place the list of changed tracker:id:

I %LIST gets replaced by a list of identifiers.

I So, in the end the result is a filter like this:

FILTER (tracker:id(?urn) IN (5, 15, 29, 61, 125))



Going Live: Complete Update Query

Complete Update Query:

SELECT

tracker:id(?urn) AS ?trackerid

nie:url(?urn) AS ?url

WHERE {

?urn rdf:type nmm:Photo .

FILTER (

tracker:id(?urn) IN (5, 15, 29, 61, 125)

)

}

ORDER BY ?url



SPARQL
bits



SPARQL Is Like Maths - I

Maths
Given a set of equations, which values for the free variables solve
the equations?

2x + 4y5 −
√
zk = 0

x + 5y − zk2 = 0



SPARQL Is Like Maths - II

SPARQL
Given a set of restrictions on data, which values for the free
variables satisfy the restrictions?

SELECT ?url ?mimetype

WHERE {

?urn rdf:type nmm:Photo .

?urn nie:url ?url .

?urn nie:mimeType ?mimetype .

FILTER (?urn nie:mimetype IN

"image/jpeg", "image/png", "image/gif")

) .

}



SPARQL Bits - I

If you don’t know the value of an attribute, you need a WHERE part
in your query.
Example:

DELETE {

?urn nie:contentAccessed ?date .

}

WHERE {

?urn nie:contentAccessed ?date .

}

(Deletes access time for all elements in the store.)



SPARQL Bits - II

There are no UPDATE queries, DELETE followed by INSERT is
needed. Fortunately, they can be glued in the same query (thus the
same transaction).
Example:

DELETE { ?urn nie:contentAccessed ?date . }

WHERE { ?urn nie:contentAccessed ?date . }

INSERT { ?urn nie:contentAccessed

"2011-11-11T11:11:11"^^xsd:dateTime .

}

(Updates access time for all elements in the store.)



SPARQL Bits - III

Non-multivalued attributes must be updated. Thus deleted and
re-inserted.
Example: See previous slide.



SPARQL Bits - IV

The URN (Uniform Resource Name) is not always the subject.
Especially when dealing with nested data like i.e. geolocation.
Example:

SELECT ?urn ?city ?country

WHERE {

?urn slo:location ?location .

?location slo:postalAddress ?address .

?address nco:locality ?city .

?address nco:country ?country .

}

(Picks URNs and their geolocation information for all items.)



SPARQL Bits - V

Checking for the existence of some particular attribute for some
particular subject can be done with an ASK query.
Example:

ASK {

<urn-literal> nao:hasTag

nao:predefined-tag-favorite .

}

(Works in general for any number of triplets.)



Examples
Q&A


