
Reviewing gedit project
i

Reviewing gedit project

Reviewing gedit project
ii

Copyright © 2009 Manuel Rego Casasnovas

Some rights reserved. This document is distributed under the Creative Commons Attribution-ShareAlike 3.0 license, available in
http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/3.0/

Reviewing gedit project
iii

COLLABORATORS

TITLE :

Reviewing gedit project

ACTION NAME DATE SIGNATURE

WRITTEN BY Manuel Rego
Casasnovas

August 1, 2009

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Reviewing gedit project
iv

Contents

1 Introduction 1

1.1 Description . 1

1.2 History . 1

1.3 Community . 1

1.4 License . 1

2 Analysis 2

2.1 Source lines of code . 2

2.2 Source Code Management (SCM) . 3

2.3 Mailing lists . 8

3 Conclusions 11

A Tools 11

B Instructions appendix 12

C SLOCCount 12

C.1 Evolution source lines of code . 12

C.2 Source lines of code by programming language . 13

D CVSAnalY 13

D.1 Evolution of commits per month . 13

D.2 Aggregated number of commits up to time . 14

D.3 Number of commits per author . 14

D.4 Lorenz curve . 14

D.5 Number of commits by author per year . 14

E Mailing List Stats 15

E.1 Evolution of messages per month . 15

E.2 Messages by domain name . 16

E.3 Messages by top level domain . 17

F References 17

Reviewing gedit project
v

List of Figures

1 Evolution source lines of code . 2

2 Source lines of code by programming language . 3

3 Evolution of commits per month . 4

4 Aggregated number of commits up to time . 5

5 Number of commits per author . 6

6 Lorenz curve . 7

7 Number of commits by author per year . 8

8 Evolution of messages per month . 9

9 Messages by domain name . 10

10 Messages by top level domain . 11

Abstract

gedit is the GNOME text editor. The project has been growing since the beginning of GNOME to become a powerful general
purpose text editor. This article gives an overview about this project, studying historical data from different sources: packages,
repository, mailing lists, ...

Reviewing gedit project
1 / 18

1 Introduction

This article tries to make an analysis of the gedit project from the historical point of view. The information used to redact this
document was gotten from different sources like released versions, source code management, mailing lists, ...; using some tools
like SLOCCount, CVSAnalY, Mailing List Stats, ...

1.1 Description

gedit is the official text editor of the GNOME desktop environment, it is a small and lightweight UTF-8 general purpose text
editor. Its aim is the simplicity and ease of use, however it is a powerful editor.

gedit is part of GNOME from the beginning of the project. It uses the latests libraries from the GNOME stack, including GTK+
as graphical toolkit. Providing a complete integration with the GNOME environment. It is a common example about how to
develop a GNOME application and find examples about how to use the different libraries.

The main features of gedit are:

• Full support for UTF-8 text.

• Syntax highlighting for various program code and text markup formats.

• Support for editing remote files.

• Common undo/redo and search/replace operations.

• Complete preferences system.

• Configurable and flexible plugins system, with optional Python support.

1.2 History

The history of gedit is linked to the GNOME project. GNOME was started in 1997 as an alternative desktop to KDE, because of
Qt widget toolkit was not free software. As any desktop, GNOME needed a text editor, and gedit was started in April 1998 (first
commit at SVN repository).

Nowadays, gedit is more than a simple text editor, it has a lot of features and a powerful plugins system. Making it extensible,
flexible and useful for more complex tasks that just edit plain text.

1.3 Community

gedit is part of the core of the GNOME project from the beginning, which means that its community is, in some way, the whole
GNOME community. The fact of belonging to a such large community, makes possible to take advantage of other efforts and
share efforts with other people. For example, version 2.26 is translated into 88 languages and gedit developers do not have to
take care about this issue.

As any free software project, gedit has its own mailing list and IRC channel, as well as it uses the GNOME Bugzilla. All these
tools help to manage the communication between the users and developers of the project (see more).

1.4 License

gedit is released under the GNU General Public License (GPL) version 2, as most GNOME projects.

There are just some files licensed under GNU Lesser General Public License version 2, and this is because of these files belongs
to external libraries (libegg and libsexy) used in gedit. Moreover, libsexy is already deprecated and it is just used if
GTK+ version is less than 2.15.0.

http://www.gnome.org/
http://www.gtk.org/
http://projects.gnome.org/gedit/developers.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Reviewing gedit project
2 / 18

2 Analysis

This section is going to analyze different data about the gedit project. You can find more information about the tools used at
Appendix A. Furthermore, all the steps needed to generate the charts are explained at Appendix B.

2.1 Source lines of code

In this section we are going to analyze the information extracted with SLOCCount over different versions of gedit. Summarizing,
SLOCCount counts the source lines of code of a program.

The versions used were: 0.5, 0.9, 2.0 and all stable releases from this onwards, that is the versions ended with even numbers.

Figure 1: Evolution source lines of code

Reviewing gedit project
3 / 18

In the Figure 1 you can see the evolution of source lines between the different versions. The chart reflects a continuous (more or
less) growth since the beginning of the project.

gedit is mainly written in C (78.64% in the last stable version 2.26) as it is clearly showed in the Figure 2. Again the main language
are the same of the most GNOME projects. Another languages used are: Bash, mainly for configuration and compilation; and
Python, in order to support plugins written in that language.

Figure 2: Source lines of code by programming language

2.2 Source Code Management (SCM)

In this section it is shown an analysis based on the data extracted from the SVN repository of the gedit project. This data
was extracted with CVSAnalY. As the repository used was the SVN, the last data is from April 2009; because of the GNOME
migration to Git happened in that date.

Reviewing gedit project
4 / 18

There have been 326 committers throughout the project history, that have made a total of 5697 commits. The number of commits
per month activity has a lot of ups and downs with an average of 42.83 (see Figure 3). The maximum were 197 in April 2000,
and the minimum is shared between March 1999 and February 2000 with just 4 commits. Anyway, in the logn term the activity
is keeping almost constant as it is shown in Figure 4.

Figure 3: Evolution of commits per month

Reviewing gedit project
5 / 18

Figure 4: Aggregated number of commits up to time

The Figure 5 shows the number of commits per author. Then, in order to study the relation between the committers and the number
of commits in depth, it was calculated the Gini coefficient, in this case the value is 0.7546308. As usual in free software projects
this value confirms the Pareto principle, which states that, roughly 80% of the commits are done for 20% of the committers, and
viceversa. The Lorenz curve (see Figure 6) shows this relation, where the perfect equity would be the straight line.

http://en.wikipedia.org/wiki/Gini_coefficient
http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikipedia.org/wiki/Lorenz_curve

Reviewing gedit project
6 / 18

Figure 5: Number of commits per author

Reviewing gedit project
7 / 18

Figure 6: Lorenz curve

Finally, the next chart (Figure 7) shows the number of commits made by the most collaborative authors per year. That means,
for every year it shows the commits for authors that made more than 20 commits. Thanks to this chart you can see how different
developers appear and disappear during the project history. Where the main contributors per year have been: gedit (1998-
1999), chema (2000), paolo (2001-2003) and pborelli (2004-2009).

Reviewing gedit project
8 / 18

Figure 7: Number of commits by author per year

2.3 Mailing lists

The gedit project has been using a mailing list since April 2000. Mailing List Stats was used to analyze this mailing list.

The total number of emails sent to this list is 2446, and these emails were written by 613 different email addresses. The mean of
messages per month is 21.84 (see Figure 8).

Reviewing gedit project
9 / 18

Figure 8: Evolution of messages per month

The most common domain name is gmail.com and the top level domain is com. However, the it domain is in the first position
(taking into account just country domains), mainly because of two of the main contributors are Italians. The charts Figure 9 and
Figure 10 show the number of messages sent to the mailing list by domain.

Reviewing gedit project
10 / 18

Figure 9: Messages by domain name

Reviewing gedit project
11 / 18

Figure 10: Messages by top level domain

3 Conclusions

gedit is in a continuous evolution since the beginning of the project. Furthermore, it is adding more and more features over time,
expanding its scope. The core developers have changed, however the project activity seems to keep almost constant.

To sum up and taking into account the extracted data, we can considerate gedit as a mature and active free software project that
is still growing.

A Tools

This appendix just add some basic description about the different different tools that were used to redact this report.

Reviewing gedit project
12 / 18

SLOCCount SLOCCount is a set of tools for counting source lines of code of a program. It counts the number of lines for
every language in every folder. Moreover, it calculates the estimated cost based on COCOMO model.

CVSAnalY CVSAnalY is a program to extract information from the source code management system of a project. The infor-
mation extracted is stored into a relational database in order to make easier query this information.

Mailing List Stats Mailing List Stats is a tool that analyse a mailing list and stores all the information extraced in a database.

R project R is a GNU project that provides a free software environment for statistical computing and graphics. It is similiar
to the S language and it is highly extensible.

B Instructions appendix

In this appendix you can find the steps needed to get the data and create the graphics showed in this article.

C SLOCCount

After run SLOCCount over the different versions of gedit, the information gathered was inserted in a database table with the next
structrue:

CREATE TABLE gedit (
version VARCHAR(5),
date DATE,
size INT(11),
‘lines‘ INT(11),
ansic INT(11),
sh INT(11),
sed INT(11),
python INT(11),
perl INT(11),

PRIMARY KEY(version)
);

The data was inserted with different sentences like that:

INSERT INTO gedit VALUES ("0.5", "1999-02-12", 364591,
15210, 10142, 4975, 93, 0, 0);

C.1 Evolution source lines of code

R commands:

library(RMySQL)

con <- dbConnect(dbDriver("MySQL"), user="root",
password="root", dbname="gedit_sloccount")

query <- "SELECT * FROM gedit;"
results <- dbGetQuery(con,query)
plot(results$lines, type="l", ylim=c(0,75e3),

xlab="", ylab="Lines", main="Evolution SLOC")
lines(results$ansic, col="blue", type="l")
lines(results$sh, col="red", type="l")
lines(results$python, col="green", type="l")
legend("topleft", inset=.05, c("total", "ansic", "sh", "python"),

fill=c("black", "blue", "red", "green"))

See Figure 1.

http://www.dwheeler.com/sloccount/
http://en.wikipedia.org/wiki/Cocomo
http://tools.libresoft.es/cvsanaly
http://tools.libresoft.es/mailing_list_stats
http://www.r-project.org/
http://en.wikipedia.org/wiki/S_(programming_language)

Reviewing gedit project
13 / 18

C.2 Source lines of code by programming language

R commands:

pie(main="SLOC by programming languages", c(57909, 9515, 6180, 30),
col=c("green", "blue", "red", "yellow"), clockwise=1,
labels=c("ansic", "sh", "python", "perl"))

See Figure 2.

D CVSAnalY

In order to extract the data the command executed was:

cvsanaly2 -u root -p root -d gedit_cvsanaly --extensions=Metrics --metrics-all http://svn. ←↩
gnome.org/svn/gedit/trunk/

D.1 Evolution of commits per month

R commands:

library(RMySQL)

con <- dbConnect(dbDriver("MySQL"), user="root",
password="root", dbname="gedit_cvsanaly")

query <- "SELECT date_format(s.date, ’%m/%Y’) date, count(s.id) commits
FROM scmlog s group by date_format(s.date,’%Y%m’);"

results <- dbGetQuery(con,query)

evol_commits <- ts(results$commits, start=c(1998,4), freq=12)
plot(evol_commits, type="l", xlab="Date", ylab="Commits",

main="Number of commits per month")

query_avg <- "SELECT AVG(g.numcommits)
FROM
(SELECT date_format(s.date, ’%Y’) myyear,
date_format(s.date, ’%m’) mymonth, count(s.id) numcommits
FROM scmlog s
GROUP BY date_format(s.date,’%Y%m’)) g;"

result_avg <- dbGetQuery(con,query_avg)
qqline(result_avg, col="blue", lty=2)

query_max_min <- "SELECT MAX(g.numcommits) as max, MIN(g.numcommits) as min
FROM
(SELECT date_format(s.date, ’%Y’) myyear,
date_format(s.date, ’%m’) mymonth,
count(s.id) numcommits
FROM scmlog s
GROUP BY date_format(s.date,’%Y%m’)) g;"

result_max_min <- dbGetQuery(con,query_max_min)
qqline(result_max_min$max, col="red", lty=2)
qqline(result_max_min$min, col="green", lty=2)

legend("topright", inset=.05, c("average","maximun","minimun"),
fill=c("blue","red","green"))

See Figure 3.

Reviewing gedit project
14 / 18

D.2 Aggregated number of commits up to time

R commands:

query <- "SELECT g.myyear, g.mymonth, g.numcommits,
(@sumacu:=@sumacu+g.numcommits) aggregated_numcommits

FROM
(SELECT @sumacu:=0) r, (SELECT date_format(s.date, ’%Y’) myyear,

date_format(s.date, ’%m’) mymonth,
COUNT(s.id) numcommits

FROM scmlog s
GROUP BY date_format(s.date,’%Y%m’)) g;"

results <- dbGetQuery(con,query)
evol_num_commits <- ts(results$aggregated_numcommits, start=c(1998,4), freq=12)
plot(evol_num_commits, type="h", xlab="Date", ylab="Commits",

main="Aggregated number of commits", col = "dark blue")

See Figure 4.

D.3 Number of commits per author

R commands:

query <- "SELECT p.name author, count(s.id) commits
FROM scmlog s LEFT JOIN people p ON s.committer_id=p.id
GROUP BY committer_id ORDER BY commits;"

results <- dbGetQuery(con,query)
plot(results$commits, xlab="Author", ylab="Commits",

main="Number of commits by author")

See Figure 5.

D.4 Lorenz curve

R commands:

query <- "SELECT committer_id, count(*) AS num_commits FROM scmlog
GROUP BY committer_id ORDER BY num_commits desc;"

total_committers <- dbGetQuery(con, query)
library(ineq)

Gini(total_committers$num_commits)

Lc(total_committers$num_commits, plot=T)

See Figure 6.

D.5 Number of commits by author per year

R commands:

library(RMySQL)

con <- dbConnect(dbDriver("MySQL"), user="root",
password="root", dbname="gedit_cvsanaly")

query <- "
SELECT year, name, num

Reviewing gedit project
15 / 18

FROM
(SELECT date_format(s.date, ’%Y’) AS year, p.name AS name, count(s.id) AS num
FROM scmlog s LEFT JOIN people p ON s.committer_id=p.id
GROUP BY year, name
ORDER BY year, num) g
WHERE g.num > 20;
"

results <- dbGetQuery(con,query)

results$year <- factor(results$year)

query_names <- "
SELECT DISTINCT(name)
FROM
(SELECT date_format(s.date, ’%Y’) AS year, p.name AS name, count(s.id) AS num
FROM scmlog s LEFT JOIN people p ON s.committer_id=p.id
GROUP BY year, name
ORDER BY year, num) g
WHERE g.num > 20;
"

names <- dbGetQuery(con,query_names)

col <- 1
for (i in names$name) {

results$color[results$name==i] <- col
col <- col + 1

}

dotchart(results$num, groups=results$year, labels=results$name,
color=results$color, cex=.7, xlab="Number of commits",
main="Commits by author per year")

See Figure 7.

E Mailing List Stats

The command executed to get the information from the gedit mailing list was:

mlstats --db-user root --db-password root --db-name gedit_mlstats --db-admin-user root --db ←↩
-admin-password root http://mail.gnome.org/archives/gedit-list/

E.1 Evolution of messages per month

R commands:

library(RMySQL)

con <- dbConnect(dbDriver("MySQL"), user="root",
password="root", dbname="gedit_mlstats")

query <- "
SELECT x.myyear,x.mymonth, if(g.key2 is NULL,0,g.messages) Value
FROM fm3_wildcard_date.tblyearmonth x
LEFT JOIN (SELECT date_format(m.first_date, ’%Y%m’) key2,
COUNT(m.message_ID) messages
FROM messages m

Reviewing gedit project
16 / 18

GROUP BY date_format(m.first_date,’%Y%m’)) g
ON x.id=g.key2
WHERE x.id>= (SELECT date_format(min(s.first_date), ’%Y%m’) FROM messages s)
AND x.id<= (SELECT date_format(max(s.first_date), ’%Y%m’) FROM messages s) ;
"
results <- dbGetQuery(con, query)
evol_messages = ts(results$messages, start=c(2000,4), freq=12)
plot(evol_messages, type="l", xlab="Date", ylab="Emails",

main="Number of messages per month")

query_avg <- "
SELECT AVG(h.Value)
FROM (
SELECT x.myyear, x.mymonth, if(g.key2 is NULL,0,g.messages) Value
FROM fm3_wildcard_date.tblyearmonth x
LEFT JOIN (SELECT date_format(m.first_date, ’%Y%m’) key2,
COUNT(m.message_ID) messages
FROM messages m
GROUP BY date_format(m.first_date,’%Y%m’)) g
ON x.id=g.key2
WHERE x.id>= (SELECT date_format(min(s.first_date), ’%Y%m’) FROM messages s)
AND x.id<= (SELECT date_format(max(s.first_date), ’%Y%m’) FROM messages s)
) h;
"
result_avg <- dbGetQuery(con,query_avg)
qqline(result_avg, col="blue", lty=2)

query_max_min <- "
SELECT MAX(h.Value) max, MIN(h.Value) min
FROM (
SELECT x.myyear, x.mymonth, if(g.key2 is NULL,0,g.messages) Value
FROM fm3_wildcard_date.tblyearmonth x
LEFT JOIN (SELECT date_format(m.first_date, ’%Y%m’) key2,
COUNT(m.message_ID) messages
FROM messages m
GROUP BY date_format(m.first_date,’%Y%m’)) g
ON x.id=g.key2
WHERE x.id>= (SELECT date_format(min(s.first_date), ’%Y%m’) FROM messages s)
AND x.id<= (SELECT date_format(max(s.first_date), ’%Y%m’) FROM messages s)
) h;
"
result_max_min <- dbGetQuery(con,query_max_min)
qqline(result_max_min$max, col="red", lty=2)
qqline(result_max_min$min, col="green", lty=2)

legend("topleft", inset=.05, c("average","maximun","minimun"),
fill=c("blue","red","green"))

See Figure 8.

E.2 Messages by domain name

R commands:

query <-
"
SELECT *
FROM (

SELECT COUNT(message_id) num, domain_name
FROM messages LEFT JOIN people ON author_email_address=email_address
GROUP BY domain_name ORDER BY num DESC

Reviewing gedit project
17 / 18

) g WHERE g.num>=15;
"
results <- dbGetQuery(con,query)

query <-
"
SELECT SUM(g.num) AS sum
FROM (

SELECT COUNT(message_id) num, domain_name
FROM messages LEFT JOIN people ON author_email_address=email_address
GROUP BY domain_name ORDER BY num DESC

) g WHERE g.num<15
"
total_other <- dbGetQuery(con,query)
results <- rbind(results, data.frame(num=total_other$sum, domain_name="other"))

pie(main="Messages by domain name", clockwise=1, results$num,
labels=results$domain_name)

See Figure 9.

E.3 Messages by top level domain

R commands:

query <-
"
SELECT *
FROM (

SELECT COUNT(message_id) num, top_level_domain
FROM messages LEFT JOIN people ON author_email_address=email_address
GROUP BY top_level_domain ORDER BY num DESC

) g WHERE g.num>=20;
"
results <- dbGetQuery(con,query)

query <-
"
SELECT SUM(g.num) AS sum
FROM (

SELECT COUNT(message_id) num, top_level_domain
FROM messages LEFT JOIN people ON author_email_address=email_address
GROUP BY top_level_domain ORDER BY num DESC

) g WHERE g.num<20
"
total_other <- dbGetQuery(con,query)
results <- rbind(results, data.frame(num=total_other$sum,

top_level_domain="other"))

pie(main="Messages by top level domain", clockwise=1, results$num,
labels=results$top_level_domain)

See Figure 10.

F References

[1] Gedit - GNOME Live!, The GNOME Project.

[2] gedit, The GNOME Project.

Reviewing gedit project
18 / 18

[3] GNOME: The Free Software Desktop Project, The GNOME Project.

[4] GTK+ - About, The GTK+ Team.

[5] GNU General Public License v2.0 - GNU Project - Free Software Foundation (FSF), Free Software Foundation,
Inc..

[6] GNU Lesser General Public License v2.1 - GNU Project - Free Software Foundation (FSF), Free Software
Foundation, Inc..

[7] Gini coefficient - Wikipedia, the free encyclopedia, Wikimedia Foundation, Inc..

[8] Pareto principle - Wikipedia, the free encyclopedia, Wikimedia Foundation, Inc..

[9] Lorenz curve - Wikipedia, the free encyclopedia, Wikimedia Foundation, Inc..

[10] SLOCCount, David A. Wheeler.

[11] COCOMO - Wikipedia, the free encyclopedia, Wikimedia Foundation, Inc..

[12] cvsanaly [GSyC/LibreSoft t00ls], LibreSoft.

[13] mailing_list_stats [GSyC/LibreSoft t00ls], LibreSoft.

[14] The R Project for Statistical Computing, Department of Statistics and Mathematics of the WU Wien.

[15] S (programming language) - Wikipedia, the free encyclopedia, Wikimedia Foundation, Inc..

[16] Quick-R: Home Page, Robert I. Kabacoff, Ph.D..

	Introduction
	Description
	History
	Community
	License

	Analysis
	Source lines of code
	Source Code Management (SCM)
	Mailing lists

	Conclusions
	Tools
	Instructions appendix
	SLOCCount
	Evolution source lines of code
	Source lines of code by programming language

	CVSAnalY
	Evolution of commits per month
	Aggregated number of commits up to time
	Number of commits per author
	Lorenz curve
	Number of commits by author per year

	Mailing List Stats
	Evolution of messages per month
	Messages by domain name
	Messages by top level domain

	References

