Communication between desktop and
web applications

Author: Manuel Rego Casasnovas
Contact: mrego@igalia.com
Date: 20/11/2009

Copyright: Some rights reserved. This document is distributed under the Creative
Commons Attribution-ShareAlike 3.0 licence, available in
http://creativecommons.org/licenses/by-sa/3.0/.

Abstract: Nowadays, everybody uses web applications. Despite of their advantages,
like being available at any place with Internet, they have some usability
problems with regard to common desktop applications.

This article tries to analyze the possible solutions in order to interconnect
desktop and web applications, centered in the GNOME platform and
using RTM-GLib as example and study case.

Table of Contents

Introduction 2
State of the art in the GNOME platform 2
Goals . . . e 7

The library: RTM-GLib 7
Dependencies 7
Development L 8
License 8
Roadmap 8
Usage example Lo 9

Future ideas 9
Mojito o e 9
Tracker miner 10
EDS backend 11

Conclusion 11

mailto:mrego@igalia.com
http://creativecommons.org/licenses/by-sa/3.0/

Introduction

There are a large amount of web services in the Internet. A general definition of web
service said that it is a system which provides an interface to allow interaction between
machines over a network.

As time passes more and more web applications provide some kind of API in order
to access their services. This number is growing and it seems that will keep growing for
some time. Some examples of these applications: Flickr, Facebook, Twitter, etc.

Web applications has some advantages compared with desktop applications:
e All the data is shared and in a centralized place.

e They do not need any special configuration or installation, just a simple
web browser is enough.

e Access from anywhere.

Talking about desktop applications it is worth to highlight some strengths:
e They are faster.

e Usually they have better and richer user interfaces.

There are different trends nowadays, some focused on develop applications to run in a
browser, and other related with the development of desktop or mobile applications that
uses web services.

In this article we will talk about the latter group. The main problem here is the
connection between desktop applications and these web services. That is not solved yet
in a common way for all desktop applications.

In that moment, every desktop application develops its own solution to access to some
of these remote web services. Having to fight again and again with the same issues related
with the implementation.

Usually these web applications provide some API kit (or libraries) to make more
comfortable the access to these web services from the desktop (or other web applications).
That helps to share some code, but it is not a final solution thinking in the whole
integration between desktop and web.

State of the art in the GNOME platform

There are different GNOME projects trying to fix the issues related with access to remote
web services, and trying to provide a common solution for all the desktop applications.
In this point, we are going to briefly review three of these projects: Online Desktop,
Conduit and Mojito.

There is also a page at live.gnome.org (GNOME Integration with Online Services)
that tries to aggregate all the information about the different technologies that allows to
integrate desktop and web applications. The idea is to collect all the different libraries
to define a common way to access web services in the future GNOME 3.0. When people
expect a better communication of the whole desktop with the most used web services.

http://www.flickr.com/
http://www.facebook.com/
http://www.twitter.com/
http://www.gnome.org
http://live.gnome.org/OnlineIntegration
http://live.gnome.org/ThreePointZero

Online Desktop

Online Desktop was an important initiative that tried to join the desktop applications
and the web services. The main idea is use desktop applications to access the different
web applications, instead of a just a simple web browser.

Web Services

Online Desktop

y

Applications — — o = = = = — = -

Online Desktop architecture overview

One important part is the a central web server, written in Java, which manages the
access to the different web services. This main server would be in charge to interact with
the web applications, implementing the needed interfaces to do this work. This main
server also store some user data like web services accounts, configuration of desktop
applications, etc. Even it could end up saving passwords of web applications.

This is a great idea, because all the work needed to connect with any web application
would be shared in the central server. Then, when some web application changes its
API, ideally, just this server should be modified. Moreover, from the final user point of
view, the most important feature is that he just need to authenticate one time (against
the central server) and then all his data and services would be available. Thus, the user
should not care about which computer is using, because of all the information will be
stored in the main server.

From the point of view of desktop applications, Online Desktop provides a daemon,
which defines some D-Bus methods and signals, to be used by them in order to interact
with the different web services. This daemon is connected to the main server using the

http://live.gnome.org/OnlineDesktop
http://dbus.freedesktop.org/

XMPP protocol, which means that there is a two-way communication between the dae-
mon and the central server. This allow to the server send signals to desktop applications
when some data has changed. Even, the main server could poll the different web services
from time to time, and then send signals to desktop applications.

Some advantages of this solution:
e It is really comfortable for desktop applications, because they just need to
know a D-Bus interface to interact with web applications.
e The logic to interact with web service is just implemented once in the main
server.

Some drawbacks:
e The central server could become a bottleneck if there are a lot of users.
Perhaps, some scalability problems could appear.
e Security issues that could appear because of a lot of user information is
stored in the main server.

e The project is currently abandoned.

Online desktop was started by the middle of 2007 and just lasted around one year.
It was started by some important GNOME hackers (Havoc Pennington, Owen Taylor
and Colin Walters) working in Red Hat in that time. By the middle of 2008 the project
started to decrease its activity, and it is stopped since one year ago.

Conduit

Conduit is a generic synchronization application for GNOME. It is not just a bridge
between desktop and web applications. For example, it allows you to synchronize: two
folders on your system, your music library with your iPod, your contacts with your mobile
phone, etc. Conduit allows to create different modules for each kind of synchronization.

By the way, Conduit supports the SyncML protocol, a synchronization standard for
mobile devices. That allows to share your contacts between your computer and your
mobile phone.

http://en.wikipedia.org/wiki/Xmpp
http://www.redhat.com/
http://live.gnome.org/Conduit
http://en.wikipedia.org/wiki/Syncml

Web Services @ J— = = m—m o - = - I

Conduit

Y |

D-Bus I
Applications (—O— ————— - -

Conduit modules overview (from the point of view of desktop and web communications)

As it has a wider scope than just web services, it is a completely different approach.
However, it adds a new idea to fix the problem related with web synchronization.

In the case of synchronize applications and web services it uses the D-Bus interfaces
provided by desktop applications, or just use the files stored by these applications to
get the information. Which means that for every application it should know its D-Bus
interface or how are formated the files it uses. So, if something changes in the application
implementation, the Conduit module should be modified.

Desktop applications do not know anything about Conduit, so they do not know if
somebody is doing a synchronization with their data. This can be an important source of
problems, moreover the functionality that Conduit could provide is not the as powerful
as if the proper applications directly access to web services.

If we talk about desktop and web synchronization the main advantages:
e There are already some source code to access to web services APIs in
different modules.
Among the disadvantages:
e [t is not thought for this specific purpose of connecting desktop and web
applications.
e Depends on D-Bus interfaces or file formats of desktop applications, that
could change in any moment.

e Desktop applications do not manage the interaction with the web services.

Mojito
Mojito is a project that tries to bring social networks to the desktop. It is new project
and is part of the Moblin project developed by Intel.

Web Services

Ser_1] Ser_2]_ Ser_N]

i |

Applications — — —_ —_ —_ —_ — — - -

Mojito structure overview

For the moment it is just a social network aggregator, that pulls in content from some
web services. Mojtio provides a D-Bus interface that desktop applications can use to get
data from these web applications. Moreover, it also provide a method to update your
status on web services that supports it. That is something similar to the Online Desktop
approach.

To sum up, you can say that it is a centralized place to manage all the interaction of
the desktop with different web applications. All the logic needed to connect to these web
services is implemented in Mojito. Furthermore, it polls the different web service time
to time, and send D-Bus signals when something changes.

Advantages:
e From the point of view of desktop applications that wants to interact with
some web service, it is quite similar to the Online Desktop approach.
e All the logic related with web services is implemented in the same appli-
cation, so some common code to access the web could be easily shared.

Disadvantages:

http://moblin.org/projects/mojito
http://moblin.org/
http://www.intel.com/

e For the moment it just support a few functionalities, and it is not sure
that this will expand its current scope.

e [t is still in an early stage and it is not part of the GNOME project yet.

Goals

After review the current situation related with this topic, the idea is to create a GNOME
based library in order to provide access to the Remember The Milk web application. And
after that, try to provide through Moijto (via D-Bus) all the methods needed to interact
with this web service. Making easy the access to Remember The Milk for any application.

The idea to develop a library for this service (and not any other), it is mainly because
of there was not exist a good library written in C to access to this web application.
Moreover, during the Master on Free Software, a desktop client for Remember The Milk
has been developed. This application could end up using the library (directly or through
Mojito) to make the interaction with the web service more simple.

Remember The Milk is a task and time management web application. It tries to
improve the user experience regarding this issue. It provides a lot of features allowing
to users to create multiple task lists, organize these tasks by tags, specify the location
of a task, share tasks between groups of people, etc. Almost all these features are also
available from his API web.

The library: RTM-GLib

The library that has been created is called RTM-GLib. This library provides access to
the API of Remember The Milk.

The library webpage was created at GNOME wiki (http://live.gnome.org/RTMGIib).
There you can find all the information about the project, e.g., latest news, release notes,
roadmap, etc.

It is worth pointing out that after the announcement of the first release of RTM-
GLib (version 0.1.0), that was made both in GNOME and Remember The Milk mailing
lists, the library has become one of the recommended API kits at Remember The Milk
webpage.

Dependencies

RTM-GLib just depends on librest, a library designed to make easier the access to web
services that claims to be REST, like the Remember The Milk one.

This library was written using libsoup and libxml with the aim to make very simple
the access to any web service. Without the need to manually process the response from
the web application when you do a request. librest is part of the Moblin project and has
been developed by Rob Bradford and Ross Burton. The authors of Mojito project, that
also uses librest.

The main reason to use this library, instead of the common libsoup (or libcurl) and
ltbxml combination, is its simplicity. Thanks to this library the web services requests

http://www.rememberthemilk.com/
http://www.mastersoftwarelibre.com/
http://live.gnome.org/RTMGlib
http://en.wikipedia.org/wiki/Representational_State_Transfer

are really simple to process, therefore all the effort is put in the implementation of the
particular stuff of Remember The Milk. Futhermore, it fulfills all the needs to develop
RTM-GLib.

Development

RTM-GL1b is written in C, as most of the GNOME libraries and applications.

As any GNOME library it uses GLIb and GObject as base. It defines some classes
that represent the different objects needed for an application that wants to interact with
Remember The Milk.

Besides, the library uses Check (a unit testing framework for C), in order to check the
behaviour of the different classes defined by the library.

In addition GTK-Doc was used to define the API reference, in order to allow that
anybody can be able to start to use the library without any problem.

Furthermore, during the development of RTM-GLib a Git repository (http://gitorious.org/rtm-
glib/) has been used. And two releases has been done: the first release (0.1.0) and a
maintenance release (0.1.1), fixing some bugs. Trying to follow one of the free software
maxims, “release early, release often”.

License

The license chosen for RTM-GLib is the GNU Lesser General Public License version 2.1.
The main reason to select this license is just because most of the GNOME libraries use
this license, so in some way it is more GNOME-compliant.

Moreover, this kind of license (non-copyleft) has a lot of sense if you are developing
a library, or toolkit, and your idea is to just spread the use of your library. Without
worrying if public or privative applications are developed on the top of it.

Roadmap

RTM-GLib is currently usable to access to the main part of Remember The Milk API
methods (some of them are still pending to be implemented).

Anyway, as in any software project a lot of improvements could be done, the most
important in the short term could be:

e Finish the implementation of all the methods provided by Remember
The Milk.

e Add asynchronous calls support to the library. Currently the library
just provide synchronous methods.

e Add GObject introspection support, in order to make easy the creation
of bindings for the library.

http://en.wikipedia.org/wiki/C_programming_language
http://library.gnome.org/devel/glib/stable/
http://library.gnome.org/devel/gobject/stable/
http://check.sourceforge.net/
http://www.gtk.org/gtk-doc/
http://git-scm.com/
http://gitorious.org/rtm-glib/
http://gitorious.org/rtm-glib/
http://www.gnu.org/licenses/lgpl-2.1.html
http://live.gnome.org/GObjectIntrospection

Usage example

In this section, two examples are shown in order to understand better how to use this
library. The first example explains how to manage the authentication against the Re-
member The Milk web service. In the second example, there is just a simple call to one
of the library methods that returns a list of tasks.

For more information, you can review a full example in the source code (inside the
examples folder at file rtm-glib-example.c).

Authentication

e (Create a new RtmGlib object:
RtmGlib *rtm = rtm_glib_new (YOUR_RTM_API_KEY, YOUR_RTM_SHARED_SECRET);
You will need to request an API key at Remember The Milk website.
Get the authentication frob:
gchar *frob = rtm_glib_auth_get_frob (rtm, NULL);
Request the login URL:
gchar *url = rtm_glib_auth_get_login_url (rtm, frob, NULL)
Then the user should access to the returned URL and accept the re-
quested permissions by the application.

Get the authentication token:
gchar *auth_token = rtm_glib_auth_get_token (rtm, frob, NULL);
Check that the user is properly logged:

gchar *username = rtm_glib_test_login (rtm, auth_token, NULL);

List of tasks

e (Call method rtm.tasks.getList with an RtmGlib object already au-
thenticated:

GList *glist = rtm_glib_tasks_get_list (rtm, NULL, NULL, NULL, NULL);
for (GList *item = glist; item; item = g_list_next (item)) {

RtmTask *task = (RtmTask *) item->data;

g_print ("Js", rtm_task_to_string (task));

Future ideas
Mojito

The idea, from the Goals section, to integrate in some way RTM-GLib and Mojito has
not been achieved yet. The main issue is related with the scope of Mojito project, and

http://www.rememberthemilk.com/services/api/keys.rtm

if it wants to provide to the desktop applications methods to access to any web service
through its D-Bus APL

Nowadays, Mojito is mainly centered in social networks, for example, they are adding
Facebook support right now. However, it could maybe work properly for any web service.
Anyway, this should be discussed with the project adevelopers (still without answer from
their side).

In order to provide access to Remember The Milk it is needed to implement a new
Mojito service. There are already a dummy service that could be used as base for the
development of the new plugin, that would use RTM-GLib as base library.

In my opinion, the integration of RTM-GLib in Mojito is something that should remain
as main goal for the future of the library, at least if it fits in the project scope after som
debate with the authors. This will make easier to any application interact with Remember
The Milk web service. And it would be important for the library, because this would
mean that these applications will be indirectly using RTM-GLib, that could increase the
feedback about bugs, new features, and so on. Unfortunately, for the moment, the lack
of time has made impossible to advance more in this study case.

Tracker miner

Tracker is a project with the aim to collect information and meta-information about
personal data. This information is indexed in order to can be easily and quickly searched.
It provides both a search tool and a storage system for all this information.

From the point of view of a final user, Tracker is just a small applet that allows to
insert any word related with something that he likes to found, e.g., some words of a
document or the artist of a song. But, actually some other applications uses Tracker to
ask about, for example, the video files in the system.

There is a daemon that is running in the computer and indexes every change that
happens in the file system, storing the meta-information related with the different files
in the Tracker store. These kind of daemons are called a miners.

Currently, there are only one official miner, the file system miner. However, the idea is
that in the future more miners could appear, and each of them will have the responsibility
to index different data sources. For example, there is already a person (Adrien Bustany)
working in a Facebook miner written in Vala, that also uses librest to interact with
the the web service. The source code of this new miner is in a branch of the Tracker
development repository.

When more miners are available, the user could configure which miners are currently
running and enable or disable any of them from a common applet. This applet will also
show information about the progress of the indexation process.

Talking about the implementation details, in order to develop a new miner, it is just
needed to extends an abstract class (TrackerMiner) and implement some methods to
perform common operations such as start, stop, pause and resume the miner.

For example, a new miner to index the tasks from Remember The Milk could be
developed using RTM-GLib as base library.

10

http://projects.gnome.org/tracker/

EDS backend

Evolution Data Server (EDS) provides a common backend for programs that have to
work with contacts, tasks and calendar information. At the beginning it was part of
Evolution (the default email client of GNOME project), but it is currently used for
other external applications.

One interesting example, from the point of view of RTM-GLib, is that the calendar
applet in the GNOME panel uses EDS to provide a list of your appointments and tasks.
It would be great to have these tasks synchronized with your tasks at Remember The
Milk website.

In order to develop this idea it would be necessary to create an EDS backend. This
backend could be based in the Google Calendar backend already implemented in EDS.

Conclusion

Nowadays, web applications are in really good moment. For what most of people do in a
computer, the wide range of available applications in the Internet are more than enough.
It seems that there is an interesting future related with the integration between desktop
and web applications. Nowadays, several desktop applications are starting to interact
with different web services. There are several approaches to make this communication
possible, and there are a lot of technologies trying to fix this issue in some way.

The development of the library was an interesting practice in order to know how to deal
with this kind of interaction problems. It also helps to improve the knowledge about the
GNOME platform and how its internals works. Moreover, it is a simple example about
how to fix this issue in the GNOME world. Where some ideas like proposed by librest
or Mojito could become in the standard.

Just to conclude, there are certainly exciting times ahead regarding the communication
between desktop and web.

11

http://projects.gnome.org/evolution/

	Introduction
	State of the art in the GNOME platform
	Online Desktop
	Conduit
	Mojito

	Goals

	The library: RTM-GLib
	Dependencies
	Development
	License
	Roadmap
	Usage example
	Authentication
	List of tasks

	Future ideas
	Mojito
	Tracker miner
	EDS backend

	Conclusion

