
Subcluster allocation for qcow2 images

KVM Forum 2020

Alberto Garcia <berto@igalia.com>



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...

But why is it sometimes slower than a raw file?
Because it is not correctly configured.
Because the qcow2 driver in QEMU needs to be improved.
Check my presentation at KVM Forum 2017!
Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...
But why is it sometimes slower than a raw file?

Because it is not correctly configured.
Because the qcow2 driver in QEMU needs to be improved.
Check my presentation at KVM Forum 2017!
Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...
But why is it sometimes slower than a raw file?
Because it is not correctly configured.

Because the qcow2 driver in QEMU needs to be improved.
Check my presentation at KVM Forum 2017!
Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...
But why is it sometimes slower than a raw file?
Because it is not correctly configured.
Because the qcow2 driver in QEMU needs to be improved.

Check my presentation at KVM Forum 2017!
Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...
But why is it sometimes slower than a raw file?
Because it is not correctly configured.
Because the qcow2 driver in QEMU needs to be improved.
Check my presentation at KVM Forum 2017!

Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Many features: grows on demand, backing files, internal
snapshots, compression, encryption...
But why is it sometimes slower than a raw file?
Because it is not correctly configured.
Because the qcow2 driver in QEMU needs to be improved.
Check my presentation at KVM Forum 2017!
Because of the very design of the qcow2 file format.
Today we are going to focus on that.

Subcluster allocation for qcow2 images KVM Forum 2020



Structure of a qcow2 file

A qcow2 file is divided into clusters of equal size
(min: 512 bytes - default: 64 KB - max: 2 MB)

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Data cluster

Data cluster

Subcluster allocation for qcow2 images KVM Forum 2020



Structure of a qcow2 file

The virtual disk as seen by the VM is divided
into guest clusters of the same size

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Data cluster

Data cluster

GUEST HOST

Subcluster allocation for qcow2 images KVM Forum 2020



Problem 1: copy-on-write means more I/O

Active

Backing

A data cluster is the smallest unit of allocation: writing to a
new data cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with data from the backing file, or with zeroes (if there is
no backing file).
Problem: QEMU needs to perform additional I/O to copy
the rest of the data.

Subcluster allocation for qcow2 images KVM Forum 2020



Problem 1: copy-on-write means more I/O

Example: random 4KB write requests to an empty 40GB image
(SSD backend)

Cluster size With a backing file Without a backing file∗

16 KB 3600 IOPS 5859 IOPS
32 KB 2557 IOPS 5674 IOPS
64 KB 1634 IOPS 2527 IOPS

128 KB 869 IOPS 1576 IOPS
256 KB 577 IOPS 976 IOPS
512 KB 364 IOPS 510 IOPS

(*): Worst case scenario. QEMU first tries fallocate() which is much faster
than writing zeroes

Subcluster allocation for qcow2 images KVM Forum 2020



Problem 2: copy-on-write means more used space

The larger the cluster size, the more the image grows with
each allocation.
Example: how much does an image grow after. . .

. . . 100 MB worth of random 4KB write requests?

. . . creating a filesystem on an empty 1 TB image?

Cluster size random writes mkfs.ext4
Raw file 101 MB 1.1 GB

4 KB 158 MB 1.1 GB
64 KB 1.6 GB 1.1 GB

512 KB 11 GB 1.3 GB
2 MB 29 GB 2.1 GB

The actual size difference in real-world scenarios depends
a lot on the usage.

Subcluster allocation for qcow2 images KVM Forum 2020



Decreasing the cluster size

In summary: increasing the cluster size. . .
. . . results in less performance due to the additional I/O
needed for copy-on-write.
. . . produces larger images and duplicate data.

Then let’s just decrease the cluster size, right?
Not so easy: smaller clusters means more metadata

Subcluster allocation for qcow2 images KVM Forum 2020



Decreasing the cluster size

In summary: increasing the cluster size. . .
. . . results in less performance due to the additional I/O
needed for copy-on-write.
. . . produces larger images and duplicate data.

Then let’s just decrease the cluster size, right?

Not so easy: smaller clusters means more metadata

Subcluster allocation for qcow2 images KVM Forum 2020



Decreasing the cluster size

In summary: increasing the cluster size. . .
. . . results in less performance due to the additional I/O
needed for copy-on-write.
. . . produces larger images and duplicate data.

Then let’s just decrease the cluster size, right?
Not so easy: smaller clusters means more metadata

Subcluster allocation for qcow2 images KVM Forum 2020



Problem 3: Smaller clusters means more metadata

Apart from the guest data itself, qcow2 images store some
important metadata:

Cluster mapping (L1 and L2 tables).
Reference counts.

If we have smaller clusters we’ll end up having more of
them, and this means additional metadata.

Subcluster allocation for qcow2 images KVM Forum 2020



L1 and L2 tables

The L1 and L2 tables map guest addresses as seen by the VM
into host addresses in the qcow2 file

L1 Table L2 Tables Data clusters

Subcluster allocation for qcow2 images KVM Forum 2020



The L1 table

There is only one L1 table per image (per snapshot,
actually).
The L1 table has a variable size but it’s usually small.

Example: 16KB of data for a 1TB image (using the default
settings).

It is stored contiguous in the image file.
QEMU keeps it in memory all the time.
64-bit entries: each contains a pointer to an L2 table.

Subcluster allocation for qcow2 images KVM Forum 2020



L2 tables

There are multiple L2 tables and they are allocated on
demand as the image grows.
Each table is exactly one cluster in size.
64-bit entries: each contains a pointer to a data cluster.
If we reducing the cluster size by half we need twice as
many L2 entries.
Graphically:

L2 Table Data clusters

Subcluster allocation for qcow2 images KVM Forum 2020



L2 tables

There are multiple L2 tables and they are allocated on
demand as the image grows.
Each table is exactly one cluster in size.
64-bit entries: each contains a pointer to a data cluster.
If we reducing the cluster size by half we need twice as
many L2 entries.
Graphically:

L2 Table Data clusters

Subcluster allocation for qcow2 images KVM Forum 2020



L2 metadata size

This is the maximum amount of L2 metadata needed for an
image with a virtual size of 1 TB.

Cluster size Max. L2 metadata
8 K B 1 GB
16 KB 512 MB
32 KB 256 MB
64 KB 128 MB

128 KB 64 MB
256 KB 32 MB
512 KB 16 MB

1 MB 8 MB
2 MB 4 MB

Subcluster allocation for qcow2 images KVM Forum 2020



Accessing L2 metadata

Each time we need to access a data cluster (read or write)
we need to go to its L2 table to get its location.
This is one additional I/O operation per request: severe
impact in performance.
We can mitigate that by keeping the L2 tables in RAM.
QEMU has an L2 cache for that purpose.

Example: random 4K reads on a 40GB image:

L2 cache size Average IOPS
1 MB 8068
2 MB 10606
5 MB 41187

Again, reducing the cluster size by half implies:
Twice as much L2 metadata.
Twice as much RAM for the L2 cache.

Subcluster allocation for qcow2 images KVM Forum 2020



Reference counts

Each cluster in a qcow2 image has a reference count (all
types, not just data clusters).
They are stored in a two-level structure called reference
table and reference blocks. Like L2 tables, the size of a
reference block is also one cluster.
Allocating clusters has the additional overhead of
updating their reference counts.
With a smaller clusters we need to allocate more of them.

Subcluster allocation for qcow2 images KVM Forum 2020



The overhead of having to allocate clusters

Overall, smaller clusters are faster to fill with data, but if they
get too small the overhead of the allocation process exceeds the

benefits.

Cluster size Write IOPS
512 KB 364 IOPS
256 KB 577 IOPS
128 KB 869 IOPS
64 KB 1634 IOPS
32 KB 2557 IOPS
16 KB 3600 IOPS

8 KB 758 IOPS
4 KB 97 IOPS
2 KB 77 IOPS
1 KB 62 IOPS

Subcluster allocation for qcow2 images KVM Forum 2020



The situation so far

We cannot have too big clusters because they waste more
space and increase the amount of I/O needed for
allocating clusters.
We cannot have too small clusters because they increase
the amount of metadata, which has a negative impact in
performance and/or memory usage.
This is a direct consequence of the design of the qcow2
format.

Subcluster allocation for qcow2 images KVM Forum 2020



Subcluster allocation

I’m presenting a mixed approach to mitigate this problem:
subcluster allocation.
In short:

We have big clusters in order to reduce the amount of
metadata in the image.
Each one of the clusters is divided into 32 subclusters that
can be allocated separately. This means faster allocations
and reduced disk usage.

Subcluster allocation for qcow2 images KVM Forum 2020



Subcluster allocation: what it looks like

A standard L2 table with entries and their data clusters

L2 Table Data clusters

Subcluster allocation for qcow2 images KVM Forum 2020



Subcluster allocation: what it looks like

An extended L2 table with subcluster allocation

L2 Table Data clusters

Subcluster allocation for qcow2 images KVM Forum 2020



L2 tables in detail

Each L2 table contains a number of entries that look like
this:

Cluster offset

063

Each cluster has one of these states:
Unallocated.
Allocated (normal or compressed).
All zeroes.

Now we also need to store information for each subcluster.

Subcluster allocation for qcow2 images KVM Forum 2020



Extended L2 entries

We are adding extended L2 entries, which contain a 64-bit
bitmap indicating the status of each subcluster.

Cluster offset

64127

Subcluster allocation bitmap

063

Each individual subcluster can be allocated, unallocated or
“all zeroes”.
Compressed clusters don’t have subclusters and work the
same as before.

Subcluster allocation for qcow2 images KVM Forum 2020



Two use cases for subcluster allocation

Case 1: Having very large clusters in order to minimize the
amount of metadata while reducing the amount of
duplicated data and I/O.
Case 2: Having smaller clusters to minimize the amount of
copy-on-write and get the maximum I/O performance.

Subcluster allocation for qcow2 images KVM Forum 2020



Results 1: less copy-on-write means faster I/O

Having less copy-on-write improves the allocation
performance.
If subcluster size = request size no copy-on-write is
needed!
Average IOPS of random 4KB writes:

With a backing file
Cluster size Without subclusters With subclusters

16 KB 3600 IOPS 8124 IOPS
32 KB 2557 IOPS 11575 IOPS
64 KB 1634 IOPS 13219 IOPS

128 KB 869 IOPS 12076 IOPS
256 KB 577 IOPS 9739 IOPS
512 KB 364 IOPS 4708 IOPS

1 MB 216 IOPS 2542 IOPS
2 MB 125 IOPS 1591 IOPS

(*): Worst case scenario. QEMU first tries fallocate() which is much
faster than writing zeroes

Subcluster allocation for qcow2 images KVM Forum 2020



Results 1: less copy-on-write means faster I/O

Having less copy-on-write improves the allocation
performance.
If subcluster size = request size no copy-on-write is
needed!
Average IOPS of random 4KB writes:

Without a backing file∗

Cluster size Without subclusters With subclusters
16 KB 5859 IOPS 8063 IOPS
32 KB 5674 IOPS 11107 IOPS
64 KB 2527 IOPS 12731 IOPS

128 KB 1576 IOPS 11808 IOPS
256 KB 976 IOPS 9195 IOPS
512 KB 510 IOPS 7079 IOPS

1 MB 448 IOPS 3306 IOPS
2 MB 262 IOPS 2269 IOPS

(*): Worst case scenario. QEMU first tries fallocate() which is much
faster than writing zeroes

Subcluster allocation for qcow2 images KVM Forum 2020



Results 2: less copy-on-write means less used space

Repeating the earlier test: how much does an image grow
after. . .

. . . 100 MB worth of random 4KB write requests?

. . . creating a filesystem on an empty 1 TB image?

Cluster size random writes mkfs.ext4
Raw file 101 MB 1.1 GB

64 KB 111 MB 1.1 GB
(vs 158 MB)

512 KB 404 MB 1.1 GB
(vs 11 GB) (vs 1.3 GB)

2 MB 1.6 GB 1.1 GB
(vs 29 GB) (vs 2.1 GB)

Subcluster allocation for qcow2 images KVM Forum 2020



Results 3: larger clusters mean less metadata

Extended L2 entries are twice as large but each one of them
references 32 subclusters.
As a result we have 16 times less metadata for the same
unit of allocation.
This table compares the amount of L2 metadata for a 1TB
image.

Standard L2 entries
Cluster size Max. L2 size

4 KB 2 GB
8 KB 1 GB

16 KB 512 MB
32 KB 256 MB
64 KB 128 MB

Extended L2 entries
Subcluster size Max. L2 size

4 KB 128 MB
8 KB 64 MB

16 KB 32 MB
32 KB 16 MB
64 KB 8 MB

Subcluster allocation for qcow2 images KVM Forum 2020



Caveats

This feature is useful during allocation. Writing to already
allocated areas won’t be faster.
Don’t use it with compressed images.

Extended L2 entries are twice as big but offer no benefits
for compressed clusters.

If your image does not have a backing file maybe you
won’t see any speed-up!

Copy-on-write of empty clusters is already fast if the
filesystem supports it.
However you still get the other advantages of using
subclusters.

You won’t be able to read the image with older versions of
QEMU (and don’t expect backports!).

Subcluster allocation for qcow2 images KVM Forum 2020



Implementation status

Not available in any QEMU release yet.
Expected in QEMU 5.2 around December.
The implementation is complete, it is already in the
repository and it is ready to be tested.
Simply build a recent QEMU from git and create a qcow2
image with -o extended_l2=on.

Note: the default cluster size is still 64 KB. You probably
want to create an image with cluster_size=128k or
more!

Feedback, bug reports, etc., are very much appreciated!
qemu-block@nongnu.org

Subcluster allocation for qcow2 images KVM Forum 2020



Acknowledgments

This work was sponsored by

Subcluster allocation for qcow2 images KVM Forum 2020


