\documentclass{article} \usepackage{unicode-math} \begin{document} \[x^{(n+1)(n-1)}=x^{n^2-1} \neq x^{n^2}-1\] \[\sum_{i=0}^{\infty} e^{i+1}\] \[\int _0^{2\pi}e^{e^{it} - it}dt\] \[\int _0^{2\pi}e^{ - it+e^{it}}dt\] \[\left( \frac{-1}{p} \right) = (-1)^{\frac{p-1}2}=\ldots\] \end{document}