\documentclass{article}
\usepackage{unicode-math}
\begin{document}
\[x^{(n+1)(n-1)}=x^{n^2-1}  \neq x^{n^2}-1\]
\[\sum_{i=0}^{\infty} e^{i+1}\]
\[\int _0^{2\pi}e^{e^{it} - it}dt\]
\[\int _0^{2\pi}e^{ - it+e^{it}}dt\]
\[\left( \frac{-1}{p} \right) = (-1)^{\frac{p-1}2}=\ldots\]
\end{document}
    

x(n+1)(n1)=xn21xn21x^{(n+1)(n-1)}=x^{n^2-1} \neq x^{n^2}-1

i=0ei+1\sum_{i=0}^{\infty} e^{i+1}

02πeeititdt\int _0^{2\pi}e^{e^{it} - it}dt

02πeit+eitdt\int _0^{2\pi}e^{ - it+e^{it}}dt

(1p)=(1)p12=\left( \frac{-1}{p} \right) = (-1)^{\frac{p-1}2}=\ldots